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Abstract 

Computer graphics are one of the cornerstones of human achievement. In the last 

century, digital graphics has humbly evolved from drawing pixels on a screen, to modeling the 

real-world with physics-based models. In terms of linear mathematics, computer graphics has 

seen some of the most advanced applications. This study explores the process of viewing a 3D 

space on a 2D plane. CGI can be expressed as a mathematical relationship using transformation 

matrices, rotation matrices, and luminance respectively. 

 

Introduction 

CGI can be simply summarized as a viewer interpreting 3D objects on a digital display. 

The display can be interpreted as a 2D plane in which points are plotted on. Every three-

dimensional object shown on a screen can be interpreted as a collection of points on a two-

dimensional plane.  

Linear transformations are applied to these coordinate points to trick the brain into 

seeing depth instead of just a two-dimensional figure. A simple example of this is the torus. On 

a two-dimensional plane, this figure is shown as a circle or ellipse. When the torus is 

represented on a two-dimensional plane however, rotation matrices are applied to the set of 

points to give the illusion of depth in the screen. The following is an example of a rotation 

matrix being applied to a set of coordinates (𝑥, 𝑦): 

𝑅 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 
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𝑅�⃗� = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑥
𝑦] = [

𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑥 sin 𝜃 + 𝑦 cos 𝜃

] 

According to the Encyclopedia of Mathematics, the webpage Rotation defines rotations 

of a Euclidean space around a given point form a group (Bazylev, 2002). In other words, the 

motion of a 3D object on a screen can be expressed with rotation matrices; this relationship 

tricks the brain into interpreting the depth of an object. 

To consider an application of projecting 3D coordinates into a 2D space, we can consider 

the basis of the transformation as the viewer’s perspective. In the field of 3D modeling, this 

origin is oft called the “camera”. 

 

 

Figure 1: Perspective Rendering Model 

In this model, the viewer is positioned 𝑧′ units away from the viewing window, or plane. 

To project a single coordinate in 𝑅3 space to 𝑅2 space, the coordinate is scaled by the view 

distance 𝑧′ (Treibergs, 2001). This translation is considered as the theory of 3D perspective 

rendering in computer graphics. To keep proportional equality in 𝑅2 space: 

𝑦′

𝑧′
=

𝑦

𝑧
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𝑦′ =
𝑦𝑧′

𝑧
 

 This relationship just defines the proportional equality. To project a singular coordinate 

in 𝑅3 space to 𝑅2 space, the coordinate must be scaled by the factor of the viewing distance, 

otherwise known as 𝑧′. 

(𝑥′, 𝑦′) = (
𝑧′𝑥

𝑧
,
𝑧′𝑦

𝑧
) 

 A very common application of using this projection is in video games. Along with this 

coordinate projection, transformations can be applied to a set of coordinates to simulate 

movement. The torus is a very common shape in graphic design; it is just a circle rotated around 

the y-axis to give a 3D donut-like shape. One famous example in game production of the torus 

are the coins from Nintendo’s Super Mario series. 

 

Figure 2: Torus from the Mario series 

 The following examples will detail linear transformations in a 2D space, interpretation of 

3D objects in a 2D space, and how to determine the illuminance of an object projected in 2D 

space. 
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Translation in 2D Space 

 Transformation matrices are used in 2D animation in order to move objects about our 

2D plane, the screen. In game design, a very common transformation is to move the player 

character horizontally or vertically. This is called a translation.  

 To consider a specific translation in 2D animation, the original Super Mario Bros. can be 

used as an example.  

 

Figure 3: Super Mario Bros. translation example 

 To simplify the model, the player (Mario) can be represented as the single point (𝑥, 𝑦) 

on a 2D plane. As the character moves, there are new target coordinates for the object to be 

positioned at. These target coordinates are represented as (𝑥′, 𝑦′). 

 The 2D translation matrix can now be represented. The vector (𝑡𝑥, 𝑡𝑦) represents the 

scale at which the character moves horizontally, in the x-direction: 

[
𝑥′
𝑦′

] = [
𝑥
𝑦] + [

𝑡𝑥
𝑡𝑦] 

[
𝑥′
𝑦′
1

] = [
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

] ∗ [
𝑥
𝑦
1

] 
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Rotation in 2D Space 

Often, these onscreen objects are manipulated and translated to convey 3D motion in 

the 2D space. For example, these are often rotated around the y-axis for a simple spinning 

animation. To examine a particular example of this rotation, the CGI ring animation from 

Marvel’s 2021 film Shang-Chi and the Legend of the Ten Rings.  

  

Figure 4: Shang-Chi and the Animation of the Ten Rings 

This animation features a torus revolving around the 𝑥-axis, 𝑦-axis, and 𝑧-axis on the 

screen. To simplify the mathematical model, we can evaluate it as a torus spinning about the 

axes on a fixed point. The torus is modeled as a circle of radius 𝑅1 centered at a point (𝑅2, 0, 0). 

This circle is rotated around the y-axis from angle 0 to 2𝜋. To model this transformation, the 

coordinates of the torus can be expressed as the following: 

(𝑥, 𝑦, 𝑧) = (𝑅2, 0,0) + (𝑅1 𝑐𝑜𝑠𝜃, 𝑅1𝑠𝑖𝑛 𝜃, 0) 

With the coordinate system established for the torus, the rotation of the coordinates 

can be found by applying a rotation matrix. According to the webpage Rotation Matrix by 
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Wolfram Research, Inc., the rotation matrix that rotates a given vector 𝑣 around an angle 𝜃 is 

given by: 

𝑅𝜃 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

𝑅 = [
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

] 

Considering this, the torus can be revolved about the y-axis and projected on the plane 

by the following transformation: 

(𝑅2 + 𝑅1 cos 𝜃 , 𝑅1 sin 𝜃 , 0) ∗ [
cos 𝜙 0 sin 𝜙

0 1 0
− sin 𝜙 0 cos 𝜙

] 

= ((𝑅2 + 𝑅1 cos 𝜃) cos 𝜙,      𝑅1 sin 𝜃 , −(𝑅2 + 𝑅1 cos 𝜃) sin 𝜙) 

This transformation matrix gives the mathematical relationship for rotation about the y-

axis with a torus. This rotation matrix applied to the coordinates of the torus is only one linear 

transformation. The torus should also spin about the 𝑥-axis and the 𝑧-axis by a factor of 𝛼 and 

𝛽 respectively. 

To model the rotation about all three axes, the same process is applied with more 

rotation matrices: 

(𝑅2 + 𝑅1 cos 𝜃 , 𝑅1 sin 𝜃  , 0) ∗ [
cos 𝜙 0 sin 𝜙

0 1 0
− sin 𝜙 0 cos 𝜙

] [
1 0 0
0 cos 𝛼 sin 𝛼
0 − sin 𝛼 cos 𝛼

] [
cos 𝛽 sin 𝛽 0

− sin 𝛽 cos 𝛽 0
0 0 1

] 

Thusly, the rotation process for the spinning torus found in Sonic the Hedgehog can be 

modeled as: 



  CGI • Griffin Ryan • Autumn 2021 •  8 
 

[
𝑥
𝑦
𝑧

] = [

(𝑅2 + 𝑅1 cos 𝜃)(cos 𝛽 cos 𝜙 + sin 𝛼 sin 𝛽 sin 𝜙) − 𝑅1 cos 𝛼 sin 𝛽 sin 𝜃
(𝑅2 + 𝑅1 cos 𝜃)(cos 𝜙 sin 𝛽 − cos 𝛽 sin 𝛼 sin 𝜙) + 𝑅1 cos 𝛼 cos 𝛽 sin 𝜃

cos 𝛼 sin 𝜙 (𝑅2 + 𝑅1 cos 𝜃) + 𝑅1 sin 𝛼 sin 𝜃

] 

 This is calculated roughly every frame of the process. Therefore, the variables 𝜃, 𝜙, 𝛼, 

and 𝛽 can be substituted for a value that determines the rate of spinning. For example, an 

angle of 
𝜋

2
 will spin twice as fast as 

𝜋

4
. 

 

Determining Illumination of Object with Ray Tracing 

 To supplement the illusion of 3D space on a 2D plane, lighting is used to help convey 

depth to the viewer. In the 2006 movie Cars, Pixar Animation Studios used a process called ray 

tracing to provide luminance to the 3D models (Per, 2006). Only in recent years have modern 

computational components become powerful enough to utilize ray tracing in real-time.  

 Ray tracing is the process of calculating luminance of an object by modeling a light 

bouncing off the object (Christensen, 2006). Given a light source and object in a 3D space, ray 

tracing determines the object luminance by calculating the magnitude of the surface normal 

vector on the object.  

Considering light is only cast in one direction, a sphere would have different luminance 

based on how close it is to the light source. The magnitude of the surface normal vectors varies 

at different points of the sphere. Therefore, the strength of luminance varies. 
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Figure 5: Sphere in 3D space showing luminance 

 Because Pixar movies tend to feature incredibly complex 3D models for characters, this 

illumination can be based off the spinning torus example above. 

 As the torus rotates, the strength of luminance is applied to different points based on a 

fixed light source. To simplify this model, the light source can be fixed at the point (0, 1, −1) 

which is behind and above the viewer. Essentially the light is being cast onto the 2D plane from 

behind. 

 Before the luminance is determined, the surface normal 𝑁 must be found. The surface 

normal is fixed at the origin of the torus. To have the lighting appear consistent with the 

rotating torus, the surface normal must have the same rotation process applied. 

 The point of origin is this case is (cos 𝜃 , sin 𝜃 , 0). Applying the same three rotation 

matrices found, the model is as follows: 

(𝑁𝑥  ,   𝑁𝑦,   𝑁𝑧) = [
cos 𝜃
sin 𝜃

0
] ∗ [

cos 𝜙 0 sin 𝜙
0 1 0

− sin 𝜙 0 cos 𝜙
] [

1 0 0
0 cos 𝛼 sin 𝛼
0 − sin 𝛼 cos 𝛼

] [
cos 𝛽 sin 𝛽 0

− sin 𝛽 cos 𝛽 0
0 0 1

] 

 This is just the expression for the surface normal at the point (𝑥, 𝑦, 𝑧). This expression 

must be multiplied by the point of light (0,1, −1). 

𝐿 = (𝑁𝑥  ,   𝑁𝑦 ,   𝑁𝑧) ∗ (0,1, −1) 
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𝐿 = [
cos 𝜃
sin 𝜃

0
] ∗ [

cos 𝜙 0 sin 𝜙
0 1 0

− sin 𝜙 0 cos 𝜙
] [

1 0 0
0 cos 𝛼 sin 𝛼
0 − sin 𝛼 cos 𝛼

] [
cos 𝛽 sin 𝛽 0

− sin 𝛽 cos 𝛽 0
0 0 1

] ∗ (0,1, −1) 

𝐿 = cos 𝜙 cos 𝜃 sin 𝛽 − cos 𝛼 cos 𝜃 sin 𝜙 − sin 𝛼 sin 𝜃 + cos 𝛽 (cos 𝛼 sin 𝜃 − cos 𝜃 sin 𝛼 sin 𝜙) 

 Therefore, the luminance 𝐿 for the rotating torus model is calculated as such. The two 

expressions for luminance 𝐿 and the points of the torus (𝑥, 𝑦, 𝑧) together both use the same 

rotation matrix transformations. However, we have two different expressions: 

[
𝑥
𝑦
𝑧

] = [

(𝑅2 + 𝑅1 cos 𝜃)(cos 𝛽 cos 𝜙 + sin 𝛼 sin 𝛽 sin 𝜙) − 𝑅1 cos 𝛼 sin 𝛽 sin 𝜃
(𝑅2 + 𝑅1 cos 𝜃)(cos 𝜙 sin 𝛽 − cos 𝛽 sin 𝛼 sin 𝜙) + 𝑅1 cos 𝛼 cos 𝛽 sin 𝜃

cos 𝛼 sin 𝜙 (𝑅2 + 𝑅1 cos 𝜃) + 𝑅1 sin 𝛼 sin 𝜃

] 

and 

𝐿 = cos 𝜙 cos 𝜃 sin 𝛽 − cos 𝛼 cos 𝜃 sin 𝜙 − sin 𝛼 sin 𝜃 + cos 𝛽 (cos 𝛼 sin 𝜃 − cos 𝜃 sin 𝛼 sin 𝜙) 

 

Conclusion 

Considering computer architecture, these complex equations are possible in fractions of 

a second due to the advancement of the GPU. A traditional CPU handles calculations singularly, 

whereas the GPU runs the processes in parallel. This allows for the computations happen at the 

same time. All considered, it still takes massive processing power to create a 3D scene.  

To put the torus model into perspective, this is a basic singular 3D model. Compared to 

a Pixar animation, there are thousands upon thousands of different objects that are 

transformed and illuminated with each frame. At Pixar Animation Studios, it takes an average 

24 hours to render a single frame (Hery, 2013). As such, a 60 frames/second movie that is 100 

minutes long would take 144,000 hours to render on a single machine. Equivalently, this figure 
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is almost 16.5 years of render time. With the advancement of CGI comes the advancement of 

computational processing. 

The scale of the torus model above is only a small fraction of what it takes to create the 

modern CGI we are used to seeing. This process of rotation and illumination is the essential to 

rendering 3D space on a 2D plane. Modern computer-generated imagery follows the same 

process, but on a much more massive scale. 
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